import json import requests import os # 配置文件路径 test_file_path = r"D:\workstation\chinese-roberta-wwm-ext\model-train-eval-NN\AI标注\test.json" output_dir = r"D:\workstation\chinese-roberta-wwm-ext\model-train-eval-NN\AI标注\test01" # 确保输出目录存在 os.makedirs(output_dir, exist_ok=True) # 读取测试数据 with open(test_file_path, 'r', encoding='utf-8') as f: test_data = json.load(f) print(f"📁 加载测试数据: {len(test_data)} 条记录") # 服务地址 url = "http://localhost:8888/segment_batch_simple" # 准备请求数据 - 直接使用原始格式 broadcasts = test_data print(f"🚀 开始调用双路径边界分类器批量分段接口...") # 发送请求 try: response = requests.post(url, json=broadcasts) if response.status_code == 200: result = response.json() print("✅ 批量分段成功!") print(f"模型: {result['model']}") print(f"总计: {result['total']}") print(f"成功: {result['success']}") print(f"失败: {result['failed']}") print(f"处理时间: {result['processing_time']}秒") print("\n📝 分段结果:") print("=" * 80) for broadcast_id, segments in result['results'].items(): print(f"\n📻 {broadcast_id}:") if 'error' in segments: print(f"❌ 错误: {segments['error']}") else: for para_key, para_content in segments.items(): print(f" {para_key}: {para_content}") # 保存结果到文件 output_file = os.path.join(output_dir, "batch_segment_results.json") with open(output_file, 'w', encoding='utf-8') as f: json.dump(result, f, ensure_ascii=False, indent=2) print(f"\n💾 结果已保存到: {output_file}") else: print(f"❌ 请求失败: HTTP {response.status_code}") print(response.text) except requests.exceptions.ConnectionError: print("❌ 连接失败,请确保双路径边界分类器服务正在运行") print(" 启动命令: python simplified_dual_path_boundary_classifier_api.py") print(" 服务地址: http://localhost:8888") except Exception as e: print(f"❌ 调用失败: {e}")